Book Review: Algebraic curves and Riemann surfaces
نویسندگان
چکیده
منابع مشابه
Riemann Surfaces, Plane Algebraic Curves and Their Period Matrices
The aim of this paper is to present theoretical basis for computing a representation of a compact Riemann surface as an algebraic plane curve and to compute a numerical approximation for its period matrix. We will describe a program Cars ((3]) that can be used to deene Riemann surfaces for computations. Cars allows one also to perform the Fenchel{Nielsen twist and other deformations on Riemann ...
متن کاملComputing Riemann matrices of algebraic curves
A black-box program for the explicit calculation of Riemann matrices of arbitrary compact connected Riemann surfaces is presented. All such Riemann surfaces are represented as plane algebraic curves. These algebraic curves are allowed to have arbitrary singularities. The method of calculation of the Riemann matrix is essentially its deenition: we numerically integrate the holomorphic diierentia...
متن کاملμ-Bases of Algebraic Curves and Surfaces
Pisokas et Stellina Sideri. Grâcè a eux j'ai passé une année merveilleusè a Nice et j'espère que nous partagerons encore plein de bons moments ensemble. Finalement, je remercie de tout mon coeur ma m` ere Gerda et mon frère Christoph pour leur amour et leur soutien. Je leur serai toujours reconnais-sant pour tout ce qu'ils ont fait pour moi.
متن کاملArrangements of Curves and Algebraic Surfaces
We show a close relation between Chern and logarithmic Chern numbers of complex algebraic surfaces. The method is a “random” p-th root cover which exploits a large scale behavior of Dedekind sums and continued fractions. We use this to construct smooth projective surfaces with Chern ratio arbitrarily close to the logarithmic Chern ratio of a given arrangement of curves. For certain arrangements...
متن کاملRadical parametrization of algebraic curves and surfaces
Parametrization of algebraic curves and surfaces is a fundamental topic in CAGD (intersections; offsets and conchoids; etc.) There are many results on rational parametrization, in particular in the curve case, but the class of such objects is relatively small. If we allow root extraction, the class of parametrizable objetcs is greatly enlarged (for example, elliptic curves can be parametrized w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1996
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-96-00636-2